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A statistical modeling method for estimating
mortality and abundance of spawning salmon from
a time series of counts

R. Glenn Szerlong and David E. Rundio

Abstract: We present a statistical modeling method for estimating mortality and abundance of spawning salmon from
time-series counts that eliminates the need for separate information about mortality. We model arrival and mortality
using differential equations, where mortality can be constant or changing linearly, and estimate mortality and abun-
dance from counts using maximum likelihood when multiple estimates of detection rate are available. We also develop
an approximate likelihood to estimate mortality and abundance when only a single value for detection rate is available
or to estimate only mortality when detection rates are entirely unknown. We demonstrate our approach using counts of
coho salmon (Oncorhynchus kisutch) where mortality, abundance, and detection were determined from tagging at a
weir. Our model for nonconstant mortality produced mortality estimates that closely matched the empirical data and
were robust to variation in other parameters. It also provided a better fit to the stream counts and a closer abundance
estimate to the weir count than the constant mortality model. Monte Carlo simulations indicated that the approximate
likelihood provided reasonable estimates of mortality over most of the ranges of parameters explored, particularly
under the nonconstant mortality model, and produced relatively unbiased abundance estimates using a single value for
detection.

Résumé : Nous présentons une méthode de modélisation statistique pour estimer la mortalité et l’abondance de sau-
mons en fraie à partir de séries chronologiques de dénombrements sans nécessiter de renseignements séparés sur la
mortalité. Nous modélisons l’arrivée et la mortalité à l’aide d’équations différentielles dans lesquelles la mortalité peut
être constante ou changer de façon linéaire et nous estimons la mortalité et l’abondance d’après les dénombrements en
utilisant une méthode de vraisemblance maximale lorsqu’il existe des estimations multiples du taux de détection. Nous
avons aussi mis au point une vraisemblance approximative pour estimer la mortalité et l’abondance lorsqu’une seule
valeur du taux de détection est connue ou alors pour estimer la mortalité seule lorsque le taux de détection est complè-
tement inconnu. Nous illustrons notre méthodologie en déterminant la mortalité, l’abondance et la détection chez des
saumons coho (Oncorhynchus kisutch) à l’aide de dénombrements obtenus par marquage à un barrage. Notre modèle à
mortalité non constante produit des estimations de la mortalité qui correspondent de près aux valeurs empiriques et qui
sont robustes en cas de variation des autres variables. Ce modèle produit aussi un meilleur ajustement aux dénombre-
ments dans le cours d’eau et une estimation plus exacte de l’abondance à partir des dénombrements au barrage que le
modèle à mortalité constante. Des simulations de Monte Carlo indiquent que la vraisemblance approximative permet de
faire des estimations adéquates de la mortalité sur presque toute l’étendue des variables examinées, particulièrement
avec le modèle à mortalité non constante; elle génère des estimations relativement peu faussées de l’abondance lors-
qu’on utilise une seule valeur de détection.

[Traduit par la Rédaction] Szerlong and Rundio 26

Introduction

The “area under the curve” (AUC) method is a common
technique for estimating abundance of spawning salmon in
streams and rivers (Neilson and Geen 1981; English et al.
1992; Irvine et al. 1992). By this method, counts of live fish
made during periodic surveys are converted to an estimate of
total abundance by fitting a curve to the entire time series of

counts (usually after adjusting the counts for detection rates
less than one), integrating the curve numerically to calculate
a total number of fish-days, and then dividing this total fish-
days by the mean individual survival time in days. This
method, while conceptually simple, has several limitations
in practice. First, in addition to the time-series counts, it re-
quires data on detection and survival rates that often are dif-
ficult to obtain. Second, because the method is essentially
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deterministic, there is no clear way to account for missing
counts or to include uncertainty of detection and survival es-
timation in the final abundance estimate.

New statistical modeling approaches have been developed
recently that address some of the limitations of traditional
AUC methods to improve accuracy, estimate uncertainty, and
permit estimation with fewer data. Quinn and Gates (1997)
developed a general likelihood approach for estimating
escapement of pink salmon (Oncorhynchus gorbuscha) by
treating spawner abundance as an unknown but estimable
function of a stochastic arrival-and-death model. Various
functions for the immigration and mortality dynamics then
can be fitted to the data by, for example, maximum likeli-
hood (ML), and the resulting abundance estimates compared
for accuracy against the observed time-series counts. Errors
of estimation, where they occur, might be thought of as aris-
ing either from unpredictable variability in the random im-
migration and mortality components of the model or else as
a consequence of imperfect sampling. The decided-upon
error structure of the data thus implies a particular likelihood
model, which (if sufficient information is available for likeli-
hood maximization) then serves as a basis for estimating
missing counts, estimating precision, and selecting among
sets of possibly competing arrival or death models.

The major limitation of the method of Quinn and Gates
(1997) is that extensive data on immigration and mortality
dynamics are required to fit the model, and several adapta-
tions of their general approach have been developed subse-
quently for situations in which these data are limited or
unavailable. The most common approach ties a parametric
function for arrival times and auxiliary data on mean mortal-
ity into likelihood models for sampling errors. For example,
Hilborn et al. (1999) reduced the need for additional time-
series data on arrival and mortality by modeling temporal
autocorrelation in abundance counts by a probability density
curve and by constraining the expected number of deaths to
depend on the time of peak abundance and the mean survival
time (i.e., longevity) of spawners (for an extension to
steelhead (Oncorhynchus mykiss), see Korman et al. 2002).
Estimates of longevity are obtained from prior or auxiliary
data (in these examples, from weir studies) and then used to
specify a Bayesian prior distribution (see Carlin and Louis
2000) for maximum-likelihood abundance and precision es-
timation. Su et al. (2001) modified the model of Hillborn et
al. (1999) to account for declining longevity over the spawn-
ing season (e.g., Neilson and Geen 1981; English et al.
1992; Korman et al. 2002) and also developed a hierarchical
Bayesian method to use historical information on peak abun-
dance and longevity to reduce uncertainty of estimates from
incomplete time-series counts (Adkison and Su 2001). These
customizations, while clearly more flexible than the tradi-
tional AUC approach, all retain a strong dependence on the
prior estimate for longevity. Consequently, large errors in the
abundance estimate can arise when the true longevity de-
parts sufficiently from the assumed prior. In addition, be-
cause of the restrictions imposed on the parametrical model,
there appears to be no way to infer mortality dynamics di-
rectly from the abundance counts.

In this paper, we develop a method for estimating both
mortality and abundance from a single time series of live-
spawner counts, eliminating the need for prior or auxiliary

information on longevity. Our approach is model-dependent,
requiring the assumptions that all salmon die after spawning
(i.e., they are semelparous; cf. Korman et al. 2002) and that
the expected abundance change in the stream can be de-
scribed as an arrival–death process. Our method closely
follows that of Manly (1974) and Zonneveld (1991) for esti-
mating mortality and abundance of emergent insects from
serial transect counts, but departs where we allow mortality
rates to change over time (see also Su et al. (2001)). Like
both traditional AUC and the newer likelihood models
(Hilborn et al. 1999; Su et al. 2001), our method requires
additional information about detection rates in order to esti-
mate abundance. However, we develop a model approxima-
tion that permits estimation of mortality even for cases when
detection rates are unknown.

We present our approach in several steps. First, we intro-
duce our model for the expected arrival and death dynamics.
For simplicity, we begin by assuming that the rate of mortal-
ity is constant and then relax this assumption to allow for
mortality rates that change linearly with time. Next, we de-
velop a likelihood model that admits errors due to counting
and uncertainty in the visual detection of fish for estimating
mortality and abundance when estimates of detection rate
are available for every count in the time series. Then we de-
velop a second form of the likelihood to accommodate some
missing estimates of detection. In addition, because data on
detection may be available only as single-point estimates or,
more often, lacking altogether from spawner surveys, we
present an approximate likelihood model to estimate mortal-
ity and abundance using a single value for detection rate or
to estimate only mortality when detection rates are entirely
unknown. We use simulations to assess bias in estimates
from this approximation under different parameter values.
Finally, we demonstrate the methods using data that were
collected in a tag-and-survey study for adult coho salmon
(Oncorhynchus kisutch) in northern California where abun-
dance was known from a weir.

Methods

Modeling arrival and death
For semelparous species such as coho salmon, the number

of live fish that are present in a stream at time t (x(t)), and
therefore susceptible to visual sampling, depends largely on
two biological processes: (i) arrival to the stream or the sam-
ple area and (ii) mortality or permanent emigration (Quinn
and Gates 1997). Where sampling covers the entire stream
length, removals from the sample are due mostly to mortal-
ity, and in this case, the inverse of the mortality rate (days–1)
is equivalent to the adult longevity (sometimes called
“stream-residence time” (English et al. 1992) or “stream
life” (Hilborn et al. 1999)). When only part of the stream is
sampled, the longevity estimate will include both mortality
and permanent emigration.

To model the counting process through time, we first define
the rate of abundance change, dx(t)/dt, as the instantaneous dif-
ference between the number of new arrivals and new deaths
(Manly 1974; Zonneveld 1991; Quinn and Gates 1997). For
simplicity, we assume that the overall pattern of arrival can be
modeled by a two-parameter gamma density curve having



mode at time t = (r – 1)/λ, where r ≥ 1 and λ > 0. The advan-
tage of modeling arrival by a parametric curve is that the den-
sity function is assured to integrate to unity, thus permitting the
total escapement to be modeled despite intermittent observation
(Hilborn et al. 1999; Su et al. 2001; Korman et al. 2002). We
selected the gamma curve because the gamma density function
is constrained to the positive numbers and because it can take a
wide variety of shapes, including asymmetrical ones. Below
we model mortality as constant or changing linearly with time.
The expected rate of abundance change is then given by the
proportion of total escapement arrived at time t minus the ex-
pected deaths at time t.

Constant mortality
With constant per-capita mortality (θ), the rate of abun-

dance change is given by
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where E is the total escapement, Γ(r) is the normalizing
gamma constant
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which is the total number of fish that died and is equivalent
to the AUC solution for the total escapement. By noting that
eq. 1 is a first-order linear differential equation, it can be an-
alytically solved for x(t) (see, e.g., Boyce and DiPrima 2004).
The solution for x(t), with initial condition x(0) = 0, yields
the expected number-present curve:
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where a = [(λ /(λ – θ)]re–θt for λ > θ. Under this model, abun-
dance rises to a peak at t = (r – 1)/(λ – θ), then declines
smoothly toward zero as t becomes large. For any time t, the
expected number of live fish present and susceptible to sam-
pling depends on four parameters: the total escapement (E),
the mortality rate (θ), and the two arrival parameters of the
gamma density function (r and λ).

Nonconstant mortality
To accommodate potentially increasing (or decreasing)

mortality with time, we assume linear change and substitute
θ in eq. 1 with θ(t) = θ0 + θ1 t, where θ0 > 0 is the initial
mortality rate and θ1 is the coefficient of mortality accelera-
tion. The linear model, while potentially restrictive for the
overall pattern of mortality, may be considered a first-order
approximation to a more complicated rate function (e.g.,
Quinn and Gates 1997; Su et al. 2001) that otherwise might
be too difficult to estimate precisely from a short time series
of counts. The solution for x(t), with x(0) = 0, yields
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Note that for θ1 = 0, the mortality rate is constant and that
this solution returns eq. 2 as a special case. Model selection
for mortality dynamics may therefore proceed in the form of
a statistical test on the value of the acceleration coefficient.

Admitting unpredictable variability
Random variation can be introduced to the model in one

of three ways: (i) as process variability in arrival and death
dynamics (Quinn and Gates 1997); (ii) as sampling variabil-
ity due to counting errors and differences in detection rates
during multiple visual surveys (Quinn and Gates 1997;
Hilborn et al. 1999; Su et al. 2001); or (iii) as both process
and sampling variability (Parken et al. 2003). Immigration
and death are likely to vary as a consequence of biology and
environmental conditions. However, this variation often is
difficult to infer with intermittent observations because most
irregular features of immigration and death are effectively
removed (or smoothed) from the data as a result of counting
fish that arrived or died over multiple surveys. For simplic-
ity, we shall assume that process variability has a negligible
effect on the data and that most of the observable variation
in our counts arises from sampling.

A likelihood model
Our inferential model therefore takes the form of a sam-

pling model for a series of observations from the realized
number-present curve. During each of q survey occasions,
the entire stream is sampled and nu (u = t0, t1, …, tq–1) indi-
vidual fish are counted. We assume that each individual that
is alive and present in the stream on occasion u is detected
with frequency πu , where the detection frequencies them-
selves are independently and identically distributed (iid) as
beta random variables. The beta density function for detec-
tion is
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with mean E(πu ) = α/(α + β). Thus, the unconditional distri-
bution of a count from the number-present curve (xu � x(u))
is
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with mean xuα/(α + β). Equation 5 can be recognized as a
beta-binomial distribution (Carlin and Louis 2000), because
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is a conditional (on πu) binomial distribution. The important
assumptions to this point are that the distribution of detec-
tion frequencies is homogeneous with respect to the individ-
ual fish and that the distribution of counts follows a
conditional binomial distribution.

The necessary data for statistical inference include the
time-series counts nt0

, nt1
, ... , ntq − 1

, and the time series of
detection frequencies, which we shall treat separately be-
low as being either fully or partially known. From the data,
we wish to estimate the x1, x2,…, or more precisely, by
substituting eq. 2 or eq. 3 into to eq. 5, we wish to estimate
the model parameters {E, r,λ,θ} in the case of constant
mortality (eq. 2) or {E, r,λ,θ0 ,θ1} in the case of
nonconstant mortality (eq. 3).

If the full time series of detection frequencies is known
(i.e., { }πt tp
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), the model likeli-
hood L1 is most easily expressed for parameter estimation as
a binomial model for xu:
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where u (u = 0, 1, …, q – 1) denotes survey occasions. Esti-
mation of the unknown parameters then should proceed by re-
placing xu with eq. 2 or eq. 3, with the necessary constraint
that the detection rate on the first survey be some value
greater than zero, and numerically maximizing the binomial
component of the likelihood directly at the time-series counts.

We may accommodate some missing values for detection
by assuming that the distribution of detection frequencies is
identically distributed with respect to the separate survey oc-
casions. Mean detection undoubtedly will vary over time in
response to variable stream conditions, but the assumption
of a stationary distribution for detection seems reasonable if
sampling is scheduled to coincide with consistently favor-
able counting conditions, such as during low stream flow
and during peak daylight. Under these assumptions the
model likelihood then can be written
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The advantage of this formulation for the likelihood is that
the overall mean detection now can be estimated by the av-
erage of any two or more individual estimates of detection
rate. Also, extra uncertainty is included in the model in the
form of beta variability because full detection frequencies
are unknown and must be estimated by the mean detection
rate over time.

An approximate likelihood
The model likelihood can be recast in its most simple, al-

beit restrictive, form to estimate abundance and mortality if
only a single-point estimate of detection is available or to es-
timate only mortality if detection estimates are entirely lack-
ing. By assuming that detection rates are constant (i.e., pu =
p for all u), the binomial distribution tends, for large sam-
ples, to a Poisson distribution with mean and variance equal

to µ u = pxu. This leads to an approximate likelihood (e.g.,
Zonneveld 1991):
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It should be noted that the Poisson distribution restricts the
variance, which may mean that the widths of the confidence
intervals (CIs) are somewhat underestimated (i.e., too nar-
row).

When detection rates are entirely unknown, abundance
cannot be estimated by ML because p and E are completely
confounded in the estimating equations. (This limitation is
common to other ML methods as well, e.g., Hilborn et al.
(1999) or Su et al. (2001).) However, the solutions to the
ML equations ∂L3/∂θ = 0 or ∂L3/(∂θ0∂θ1) = (0,0) are not
affected by the confounded parameters p and E, so an ap-
proximate ML estimate for mortality can be obtained despite
having no information on the true level of escapement or the
detection rate.

A simulation study to examine bias of the approximate
likelihood

We performed Monte Carlo simulations to examine bias
of mortality and abundance estimation under our approxi-
mate likelihood model. Using eqs. 3 and 7, we simulated
200 time series of eight counts (the number from our tag-
and-survey study; see Demonstration of the approach) under
each of 60 parameter combinations for mean detection, total
escapement, and mortality acceleration θ1 . We assumed that
beta variability in detection under eq. 3 incorporated obser-
vation error into the simulated data. To apply the results to
small populations, we restricted the range of total escape-
ment for simulations to between 350 and 1400. Values of the
remaining parameters were selected based on our analysis of
data from the tag-and-survey study and are presented with
the results in Figs. 1 and 2. To each simulated time series,
we fitted eq. 3 by iterative maximization of the natural loga-
rithm of the Poisson likelihood (eq. 8), thus obtaining a total
of 200 × 60 individual estimates for {E,r,λ,θ0 ,θ1}. From
each set of 200, we estimated the median mortality-rate esti-
mate, M t[ � ( )]θ and the asymptotic relative bias of the escape-
ment estimate, ARB = −( [ � ] )/M E E E.

Demonstration of the approach

Collection of empirical data
We collected empirical data on spawning coho salmon in

the South Fork Noyo River, a small coastal river in northern
California, to evaluate the performance of the models against
empirical estimates of mortality and escapement. We con-
ducted traditional spawner surveys to obtain counts of live
adults for fitting the models and used counts of adult coho at
a weir and mark–recapture surveys to estimate total escape-
ment, longevity, and detection rates for comparison. We
checked the weir daily during the entire coho spawning sea-
son, December 2003 to February 2004. Coho were mea-
sured, identified to sex, marked with an operculum punch
and a uniquely numbered Floy tag (T-bar anchor tags; Floy
Tag, Seattle, Wash.), and released upstream. We marked
three groups of fish (100–240 each) with different-colored
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tags on separate dates 1–2 weeks apart in December to esti-
mate detection rates during subsequent spawner surveys. We
counted live spawners and recovered tagged carcasses dur-
ing approximately weekly surveys covering the entire habi-
tat upstream of the weir, roughly 35 km of stream. We
conducted surveys when stream flow and visibility were fa-
vorable until no new spawners or carcasses were found, for
a total of eight surveys. For estimating longevity, we took
the date of death as the midpoint between the survey when a
carcass was found and the prior survey (to reduce overesti-
mating stream life because of the intervals between surveys)
and calculated longevity as the number of days between tag-
ging of a fish at the weir and date of death. We estimated
detection rate for each color-tagged group of fish as the pro-
portion of tagged fish that was observed during the survey
on the week after the group was tagged. We estimated es-
capement by adjusting the weir count using a Petersen esti-
mate to account for unmarked carcasses that were found
above the weir. To resolve variation in the longevity data,
we fitted a multiple-regression model with longevity taken
as the dependent variable and sex, fork length, arrival day,
and sex-by-day interaction taken as independent variables.

Model fitting and testing
We fitted models for constant and nonconstant mortality

to the time-series counts from spawner surveys using, for
demonstration, both L2 (beta-binomial likelihood) and L3
(Poisson likelihood) to compare parameter estimates under
the different likelihooods. Each model was fitted by
iteratively maximizing the natural logarithm of the particular
likelihood using the simplex search algorithm (Lagarias et
al. 1998) in MATLAB (The MathWorks Inc. 2004). Integrals
for calculating abundance were evaluated numerically at
each iteration of the search procedure by adaptive Gauss–
Lobatto quadrature (Gander and Gautschi 2000). For detec-
tion rate, we used 0.22 (mean from the tagging estimates)
and also 0.50 and 0.70 for comparison because the empirical

values probably underestimated actual detection (see Results
below). We made pairwise comparisons between mortality
models (constant vs. nonconstant) using G2 tests (general-
ized likelihood-ratio tests; Rice 1995) to compare quality of
fits to the data.

Precision, bias, and correlations of the parameter esti-
mates were estimated by parametric bootstrap (Bradley and
Tibshirani 1993). For the data, we simulated 2000 time se-
ries of eight counts under eqs. 3 and 7, with parameters sub-
stituted by their ML estimates and selecting a detection rate
that yielded an escapement estimate closest to the weir count
for ease of comparison. Sampling distributions were gener-
ated by refitting the model to each simulated time series.
Precision was estimated by the percentiles of the empirical
sampling distribution and by the coefficient of variation
(CV) = SD/median. In this case, CIs may be underestimated
somewhat because of our choice of a fixed detection rate and
our use of a Poisson model that does not accommodate
overdispersion. Bias was estimated by ARB = (median –
estimate)/estimate.

Results

Simulations using the approximate likelihood
Median mortality-rate estimates from the Monte Carlo

simulations for constant mortality (θ1 = 0) showed an in-
verse relationship between estimates of θ0 and θ1 , indicating
negative bias in �θ0 with positive bias in �θ1 (Fig. 1a). As a
consequence of this relationship, estimates of mortality ac-
celeration, which should equal zero, were instead positive,
implying an increasing rate of mortality through time and re-
sulting in a change from negative bias in the mortality esti-
mate at t = 0 to eventually positive bias. The degree of bias
appeared to diminish over the higher levels of detection and
total escapement, and for π ≈ 0.80 and E ≥ 1050, the mortal-
ity estimate did not differ much from its basis value of θ0 =
0.029 (determined from the tag-and-survey study).
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Fig. 1. Median mortality-rate estimates, M[�θ(t)], from simulated time-series counts as a function of mean detection and total escape-
ment (π, E). The solid line in each plot indicates the basis mortality rate for simulations: θ0 + θ1(t), with θ0 = 1/34 = 0.029 and
(a) θ1 = 0 or (b) θ1 = 0.003. For clarity, some results are not shown.
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For nonconstant mortality (θ1 > 0), estimates of θ0 and θ1
also were inversely related, but in contrast to the previous
case, the degree of bias generally was insensitive to variabil-
ity in mean detection and escapement (Fig. 1b). Although
we set θ0 = 0.029 for all simulations, estimates of θ0 never
deviated much from zero, suggesting, at least for these data,
that the initial mortality was difficult to estimate. Estimates
of θ1 were higher than the basis value in all cases.

Despite the bias observed in the mortality-rate estimates
(Fig. 1), escapement estimation appeared to be little affected
by Poisson approximation (Fig. 2). This is because the total
escapement can be considered a weighted sum of the mortal-

ity and the number present, E t x t t=
∞

∫ θ
0

d( ) ( ) , and therefore

bias in the escapement estimates is incurred largely as a

function of the estimated net mortality, � ( )θ
0

d
∞

∫ t t, rather than

the estimated instantaneous mortality, � ( )θ t . For instance,
where bias in the estimates of instantaneous mortality was
negative and then positive and large (over low θ1 and low π;
Fig. 2a), the net mortality was overestimated, and as a result,
the escapement was estimated high (lower diagonals of
Figs. 2a, 2b). Conversely, where bias in the estimates of in-
stantaneous mortality were negative and small (over high θ1 ;
Fig. 2b), net mortality was underestimated, and as a result,
escapement was estimated low (upper diagonals of Fig. 2).
Also, because the bias was little affected by detection and
escapement for θ1 > 0 (Fig. 2b), the bias in the escapement
estimates was generally unchanged over the basis values of π
and E. For θ1 > 0, the amount of bias often was small
(mostly between –20% and 20%; Fig. 2b).

Demonstration of the approach

Empirical results
We captured and marked 645 adult coho at the South Fork

Noyo River weir (Fig. 3) and recovered 162 carcasses during

spawner surveys. Fourteen of the carcasses were unmarked,
resulting in a Peterson estimate of total escapement of 706
fish. Estimates of detection rate from the three groups of
uniquely tagged fish were 0.24, 0.20, and 0.22, suggesting
that detection frequencies were stationary over time and that
eq. 7 was an appropriate likelihood for parameter estimation.
However, the mean detection rate ( �p = 0.22) probably under-
estimated true detection as a result of unobserved mortality
and tag loss (e.g., 35% of carcasses had operculum punches
but were missing Floy tags). Multiple regression analysis re-
vealed that longevity was related to arrival day (type III
F tests, with α = 0.05, b = –0.51, F = 31.09, P < 0.001, R2 =
0.25, n = 92) but unrelated to sex or size, with no inter-
actions. The final fitted regression for the mean longevity
shows a steep decline from approximately 30 days at the
start of the immigration period to approximately 10 days on
the 40th day of the season (Fig. 4).

Performance and comparison of models
Estimates of per-capita mortality and total escapement, as

well as the negative of the maximized log-likelihood (–lnLmax)
for model selection and evaluation of model goodness-of-fit,
are shown in Table 1. The model for nonconstant mortality
(θ1 ≠ 0) provided a significantly better fit to the counts than
the model for constant mortality, regardless of the level of
detection or whether the test statistic was taken as a ratio of
beta-binomial or Poisson likelihoods (Table 1). However,
comparison of fits between the model for nonconstant mor-
tality and a general model, in which the xt were taken di-
rectly as the counts themselves rather than being estimated
by eq. 3, yielded G2 values of 30.0 for the Poisson and 28.1,
42.3, and 67.9 for the beta-binomial with p = 0.22, 0.5, and
0.7, respectively. Considering that the critical value for the
test is Gα ν,

2 = 6.25 (from a chi-square distribution with α =
0.1 and v = 3 df), the large values indicated a significant
model lack-of-fit (when compared with the most general
model) and that the data were better described with more pa-

Fig. 2. Asymptotic relative bias (ARB) for estimates of total escapement from simulated time-series counts as a function of parameters
π and θ1. Each solid circle represents 200 estimates from data simulated under a binomial probability distribution with values r = 2.68,
λ = 0.16, and θ0 = 0.029 and (a) E = 350 or (b) E = 1400. Contours were fitted using a linear-interpolation algorithm in MATLAB
(The MathWorks 2004).
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rameters. Nonetheless, the nonconstant mortality model
shows a reasonably good fit to the counts (Fig. 5), which is
heartening in light of the irregular pattern of arrival that we
observed at the weir (Fig. 3).

Most differences between the escapement estimates were
due to differences in average detection and whether mortal-
ity was taken as constant or nonconstant rather than due to
differences in the assumed likelihood distribution (Table 1).
Estimates of escapement between likelihoods were virtually
identical for models of constant mortality but were lower
under the Poisson distribution, because of negative bias in
estimates of net mortality (see Simulations using the approx-
imate likelihood) for models of nonconstant mortality. The
escapement estimate closest to the weir count was obtained
by the nonconstant mortality model with p = 0.50, suggest-
ing, if the model is correct, that our three mark-resighting
surveys underestimated mean detection of tagged fish (as
noted above) and that the average detection may indeed have
been closer to 0.50. Escapement estimates by the constant
mortality model were always about twice that estimated by
the nonconstant mortality model and were always much
higher (by a factor of 1.67–5.33) than the weir count.

Initial parameter estimates and the bootstrap results for
estimating precision, bias, and correlations of the parameter
estimates are shown in Table 2. On eight counts, estimates
were generally accurate but imprecise, with ARB ≤ |0.05|
and CV ≤ 0.5. Estimates of intrinsic mortality (θ0) were
highly imprecise, but the estimates were close enough to
zero to have little practical importance. Note that the boot-
strapped 90% CI for �θ1 does not include zero, suggesting
that our decision to include θ1 in the model was correct. The
50th percentile of our model-based longevity estimate (the
inverse of the mortality-rate estimate) was 7.3 days (90% CI:
4.1,10.1) at t = 40, which is similar to the empirical estimate
based on tagging (Fig. 4). Correlations between �r and �λ and
between �λ and �θ1 were high, indicating that several combi-
nations of parameter values could describe the arrival and

mortality pattern in the data equally well. The high correla-
tion between �E and �θ1 reflect the strong dependence of the
escapement estimate on the estimate of mortality rate.

Discussion

The AUC approach for abundance estimation lends natu-
rally to statistical modeling because the escapement process
can be partitioned straightforwardly into manageable com-
ponents of arrival and death. Likelihood methods admit un-
certainty in the underlying components because of process
or sampling variability, as well as provide a general frame-
work for statistical inference. In this paper, we relied on the
setting of differential equations, put forth by Quinn and
Gates (1997), to model the escapement process through
time. Autocorrelation in arrival was managed by modeling
immigration by parametric density function (Hilborn et al.
1999), and mortality was modeled, on a per-capita basis, as
constant (Manly 1974; Zonneveld 1991) or changing linearly
over time. The solution to the differential equation yielded
our model for the expected number present, which we incor-
porated as the mean of a beta-binomial or Poisson probabil-
ity model to allow for variability from sampling. Conditional
on the model, we extracted information on deaths from the
time-series counts by explicitly accounting for the effect of
mortality on the location of the peak and on the rate of
change in the fitted number-present curve. Our results from
applying the model to count data on coho salmon from
South Fork Noyo River gave accurate estimates of mortality
compared with empirical estimates based on tagging and
produced reasonable estimates of abundance within the un-
certainty surrounding the detection rate.

The major improvement of our approach over previous
AUC and likelihood methods is the ability to estimate mor-
tality directly from time-series counts of spawners, eliminat-
ing the need to collect additional data on mortality rates.

Fig. 3. Daily counts of coho salmon at the South Fork Noyo
River weir. Day 0 marks the time of the first upstream spawner
survey.

Fig. 4. Longevity of adult coho salmon with respect to arrival
day at the South Fork Noyo River weir (linear regression, y =
30.03 – 0.51x, P < 0.001, R2 = 0.25). Longevity was estimated
from the recovery of tagged carcasses during spawner surveys.



This should reduce the time and cost where tagging (e.g.,
English et al. 1992) or other techniques (e.g., video;
Shardlow 2004) otherwise would be used to estimate mortal-
ity and should improve the accuracy of estimates when esti-
mating mortality is not practical and average values from the
literature would be used instead. Furthermore, our method
allows modeling of decreasing longevity over the spawning
season, which improves the accuracy of escapement esti-
mates compared with using constant values (our study; Su et
al. 2001). The nonconstant mortality (i.e., decreasing lon-

gevity) model better fit the data than the constant mortality
model under both likelihoods (beta-binomial and Poisson)
and provided an abundance estimate much lower and closer
to the weir count, and thus the form of the mortality model
had a much greater effect on the abundance estimate than
the form of the likelihood. The mortality estimates also were
largely insensitive to the detection rate, especially under the
nonconstant model.

In our paper, we worked from general forms of the models
to simpler forms by imposing constraints based on logical
assumptions, and the various forms of the models allow flex-
ibility in applying the method under different data scenarios.
As mentioned earlier, the nonconstant mortality model gen-
erally appears to be more suitable than the constant mortal-
ity form, although selection of the mortality form can be
tested for individual data sets. The different forms of the
likelihood cater to different levels of information on detec-
tion rate. If detection rates are estimated for every count in
the time series (such as by using distance sampling; see be-
low), L1 (eq. 6) can be used. L2 (eq. 7) is useful if some
detection estimates are missing from the time series but
enough data is available to calculate the mean or if enough
prior information is available (or alternatively might be
taken from the literature) to specify parameters for the beta
distribution for detection. The approximate likelihood L3
(eq. 8) is useful for estimating abundance and mortality if
only a single-point estimate of detection is available or for
estimating just mortality in the absence of any detection rate
information. The Monte Carlo simulations and the similarity
of results between fitting the counts in the demonstration us-
ing the beta-binomial versus the Poisson likelihood suggest
that the approximate (Poisson) likelihood offers a relatively
unbiased and simple model that may be used in these cases.

Although our model offers several refinements over past
methods, it shares two limitations common to all AUC ap-
proaches. First, our model requires the initial-condition con-
straint, x(0) = 0. This constraint was necessary to obtain the
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Model p –ln Lmax
�E �θ0

�θ1 G2 P valuea

Beta-binomial
θ 0.22 38.19 3764 0.189
θ 0.50 46.59 1655 0.186
θ 0.70 61.82 1182 0.182
θ(t) 0.22 32.94 1710 1.73×10–8 3.52×10–3 10.50 1.20×10–3

θ(t)c 0.50 38.72 727 1.84×10–9 3.37×10–3 15.73 7.31×10–5

θ(t) 0.70 49.76 522 —b 3.32×10–3 24.10 9.13×10–7

Poisson
θ 0.22 34.98 3765 0.191
θ 0.50 34.98 1656 0.191
θ 0.70 34.98 1183 0.191
θ(t) 0.22 30.81 1593 —b 3.31×10–3 8.35 3.86×10–3

θ(t) 0.50 30.81 701 —b 3.31×10–3 8.35 3.86×10–3

θ(t) 0.70 30.81 501 —b 3.31×10–3 8.35 3.86×10–3

Note: Parameters were estimated using a beta-binomial or Poisson likelihood and under different lev-
els of mean detection p. Escapement (E), estimated at the weir, was 706.

aProbability value for G2 = 2lnLmax,θ – 2lnLmax,θ(t) from a chi-square distribution with v = 1 df.
b �θ0 < 1 × 10–9.

Table 1. Estimates of parameters for models of constant mortality θ and nonconstant mor-
tality θ(t) fit to counts of adult coho from the South Fork Noyo River in 2003–2004.

Fig. 5. Estimates of coho salmon abundance (lines; scaled by de-
tection rate �p = 0.22) and the number of live fish counted during
periodic walking surveys of the South Fork Noyo River (circles).
Error bars for counts are ±2 SE, estimated from a beta-binomial
distribution. Day 0 marks the time of the first survey. The
model-based abundance estimates account for either a constant
(dotted line) or increasing (solid line) rate of in-stream mortality.



solution (eq. 2 or eq. 3) for the expected rate of abundance
change (eq. 1) and follows because the gamma density at t =
0 is equal to zero. The analogous constraint in AUC estima-
tion is that the first and last counts must equal zero (English
et al. 1992), but with the parametric approach only the first
count must be so constrained. If fish are present on the first
survey, the day of first arrival to the sample area must be
guessed or estimated and the time series incremented ac-
cordingly. Otherwise, the first count in the series will be dis-
regarded in estimation (i.e., assumed to be zero), thus
leading to an error in the mortality and escapement esti-
mates. The use of historical data may help to specify a
Bayesian prior distribution on arrival time in the spirit of Su
et al. (2001), but the easiest solution is to schedule surveys
to occur either before or soon after the start of arrival. Un-
fortunately, such precise scheduling may not always be real-
istic.

The second limitation is the requirement for information
on detection rate to estimate escapement. Because visibility
rates for surveys often are poorly resolved, estimates of
salmon abundance may be particularly susceptible to this
form of uncertainty. The standard method of detection esti-
mation is to take a two-stage sampling approach and “cor-
rect” visual counts by correlation with a set of independent
abundance estimates obtained using more rigorous methods
of enumeration (e.g., photography (Neilson and Geen 1981);
electrofishing or snorkeling (Irvine et al. 1992); walking ver-
sus arial counts (Hilborn et al. 1999); mark and recapture
(Lady and Skalski 1998; Manske and Schwarz 2000;
Korman et al. 2002)). We took a similar approach, using a
series of tag and resight surveys to collect data on detection.
However, this approach was shown to be unreliable in prac-
tice because constraints on surveyor effort prevented more
than three attempts at data collection, some level of tag loss
occurred, and sampling conditions delayed the resighting
surveys, resulting, presumably, in underestimates of the
mean detection rate. Therefore, despite expending consider-
able effort and using a weir for tagging, we could generate

only a small number of data to infer detection, which in ad-
dition to compromising accurate estimation of the mean also
made it impossible for us to rigorously evaluate assumptions
of detection homogeneity and stationarity.

In conclusion, although our method reduces one of the
data limitations for estimating salmon spawner abundance
from standard stream counts by estimating longevity directly
from the counts, a robust method of determining detection
still is sorely needed to improve the accuracy of escapement
estimates. One method that deserves serious consideration is
distance sampling, in particular, line-transect sampling
(Buckland et al. 1993). Line-transect sampling has found
wide use in visual surveys of marine mammals (Laake et al.
1997; Gelatt and Siniff 1999; Pollard et al. 2002) and reef
fishes (Watson and Quinn 1997; Kulbicki 1998; Samoilys
and Carlos 2000) but has not been used much in streams
(however, see Ensign et al. 1995). The theoretical basis for
the method is that the probability of detection within a sur-
veyed area declines from unity as a predictable function of
distance between the object of interest and the observer. A
large statistical literature exists for inferring detection func-
tions from counts, data on distances, and any potentially
important covariates (e.g., stream clarity, depth, habitat vari-
ables). We believe that by incorporating such methods, for
which our models are easily modified, the model-based
approaches would be largely improved, thus yielding a more
mature methodology of count-based escapement estimation.
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(a) Initial parameter estimates.

Percentile

Parameter Estimate 5 50 95 CV ARB

E 727.3 533.8 741.6 1379.7 0.488 0.020
r 2.588 2.122 2.708 4.099 0.252 0.047
λ 0.149 0.105 0.148 0.291 0.444 –0.010
θ0 1.84×10–9 —a —a —a 1.077 –0.050
θ1 3.37×10–3 2.48×10–3 3.42×10–3 6.14×10–3 0.465 0.014

(b) Correlation coefficients.
�E �r �λ �θ0

�r –0.04
�λ –0.39 0.91
�θ0 0.03 0.03 0.04
�θ1 0.99 –0.06 –0.40 0.03

Note: A time-series of eight counts was simulated 2000 times. ARB, asymptotic relative bias.
a�θ0 < 1 × 10–9.

Table 2. Initial parameter estimates and bootstrap results from simulations of the South Fork
Noyo River coho counts using the nonconstant mortality model (eqs. 3 and 7), with p = 0.5.
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